A Family of Discontinuous Galerkin Finite Elements for the Reissner-Mindlin Plate
نویسندگان
چکیده
We develop a family of locking-free elements for the Reissner– Mindlin plate using Discontinuous Galerkin techniques, one for each odd degree, and prove optimal error estimates. A second family uses conforming elements for the rotations and nonconforming elements for the transverse displacement, generalizing the element of Arnold and Falk to higher degree.
منابع مشابه
Locking - free Reissner – Mindlin elements without reduced integration q
In a recent paper of Arnold et al. [D.N. Arnold, F. Brezzi, L.D. Marini, A family of discontinuous Galerkin finite elements for the Reissner–Mindlin plate, J. Sci. Comput. 22 (2005) 25–45], the ideas of discontinuous Galerkin methods were used to obtain and analyze two new families of locking free finite element methods for the approximation of the Reissner–Mindlin plate problem. By following t...
متن کاملDiscontinuous Galerkin elements for Reissner-Mindlin plates
We present an overview of some families of locking-free elements for Reissner-Mindlin plates recently introduced and analyzed in [2] and [1]. They are all based on the ideas of discontinuous Galerkin approach, and they vary in the amount of interelement continuity required.
متن کاملLocking-free Reissner–mindlin Elements without Reduced Integration
In a recent paper of Arnold, Brezzi, and Marini [4], the ideas of discontinuous Galerkin methods were used to obtain and analyze two new families of locking free finite element methods for the approximation of the Reissner–Mindlin plate problem. By following their basic approach, but making different choices of finite element spaces, we develop and analyze other families of locking free finite ...
متن کاملA Posteriori Error Analysis of Finite Element Methods for Reissner-Mindlin Plates
This paper establishes a very general theory for a posteriori error analysis of finite element methods of the Reissner-Mindlin plate problem in the literature. The theory assures reliability of explicit residual error estimates. The conclusion of this theory is sparsity in the mathematical research of uniform a posteriori error control. Indeed, the a posteriori error estimate for various finite...
متن کاملA Finite Volume Formulation for the Elasto-Plastic Analysis of Rectangular Mindlin-Reissner Plates, a Non-Layered Approach
This paper extends the previous work of authors and presents a non-layered Finite Volume formulation for the elasto-plastic analysis of Mindlin-Reissner plates. The incremental algorithm of the elasto-plastic solution procedure is shown in detail. The performance of the formulation is examined by analyzing of plates with different boundary conditions and loading types. The results are illustrat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 22 شماره
صفحات -
تاریخ انتشار 2005